import torch
from torch import nn, Tensor
from torch.nn.modules.utils import _pair
from torch.jit.annotations import BroadcastingList2
from torchvision.extension import _assert_has_ops
from ._utils import convert_boxes_to_roi_format, check_roi_boxes_shape
[docs]def roi_align(
input: Tensor,
boxes: Tensor,
output_size: BroadcastingList2[int],
spatial_scale: float = 1.0,
sampling_ratio: int = -1,
aligned: bool = False,
) -> Tensor:
"""
Performs Region of Interest (RoI) Align operator described in Mask R-CNN
Args:
input (Tensor[N, C, H, W]): input tensor
boxes (Tensor[K, 5] or List[Tensor[L, 4]]): the box coordinates in (x1, y1, x2, y2)
format where the regions will be taken from.
The coordinate must satisfy ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
If a single Tensor is passed,
then the first column should contain the batch index. If a list of Tensors
is passed, then each Tensor will correspond to the boxes for an element i
in a batch
output_size (int or Tuple[int, int]): the size of the output after the cropping
is performed, as (height, width)
spatial_scale (float): a scaling factor that maps the input coordinates to
the box coordinates. Default: 1.0
sampling_ratio (int): number of sampling points in the interpolation grid
used to compute the output value of each pooled output bin. If > 0,
then exactly sampling_ratio x sampling_ratio grid points are used. If
<= 0, then an adaptive number of grid points are used (computed as
ceil(roi_width / pooled_w), and likewise for height). Default: -1
aligned (bool): If False, use the legacy implementation.
If True, pixel shift it by -0.5 for align more perfectly about two neighboring pixel indices.
This version in Detectron2
Returns:
output (Tensor[K, C, output_size[0], output_size[1]])
"""
_assert_has_ops()
check_roi_boxes_shape(boxes)
rois = boxes
output_size = _pair(output_size)
if not isinstance(rois, torch.Tensor):
rois = convert_boxes_to_roi_format(rois)
return torch.ops.torchvision.roi_align(input, rois, spatial_scale,
output_size[0], output_size[1],
sampling_ratio, aligned)
class RoIAlign(nn.Module):
"""
See roi_align
"""
def __init__(
self,
output_size: BroadcastingList2[int],
spatial_scale: float,
sampling_ratio: int,
aligned: bool = False,
):
super(RoIAlign, self).__init__()
self.output_size = output_size
self.spatial_scale = spatial_scale
self.sampling_ratio = sampling_ratio
self.aligned = aligned
def forward(self, input: Tensor, rois: Tensor) -> Tensor:
return roi_align(input, rois, self.output_size, self.spatial_scale, self.sampling_ratio, self.aligned)
def __repr__(self) -> str:
tmpstr = self.__class__.__name__ + '('
tmpstr += 'output_size=' + str(self.output_size)
tmpstr += ', spatial_scale=' + str(self.spatial_scale)
tmpstr += ', sampling_ratio=' + str(self.sampling_ratio)
tmpstr += ', aligned=' + str(self.aligned)
tmpstr += ')'
return tmpstr