Source code for detectron2.utils.comm

# Copyright (c) Facebook, Inc. and its affiliates.
"""
This file contains primitives for multi-gpu communication.
This is useful when doing distributed training.
"""

import functools
import numpy as np
import torch
import torch.distributed as dist

_LOCAL_PROCESS_GROUP = None
"""
A torch process group which only includes processes that on the same machine as the current process.
This variable is set when processes are spawned by `launch()` in "engine/launch.py".
"""


[docs]def get_world_size() -> int: if not dist.is_available(): return 1 if not dist.is_initialized(): return 1 return dist.get_world_size()
[docs]def get_rank() -> int: if not dist.is_available(): return 0 if not dist.is_initialized(): return 0 return dist.get_rank()
[docs]def get_local_rank() -> int: """ Returns: The rank of the current process within the local (per-machine) process group. """ if not dist.is_available(): return 0 if not dist.is_initialized(): return 0 assert ( _LOCAL_PROCESS_GROUP is not None ), "Local process group is not created! Please use launch() to spawn processes!" return dist.get_rank(group=_LOCAL_PROCESS_GROUP)
[docs]def get_local_size() -> int: """ Returns: The size of the per-machine process group, i.e. the number of processes per machine. """ if not dist.is_available(): return 1 if not dist.is_initialized(): return 1 return dist.get_world_size(group=_LOCAL_PROCESS_GROUP)
[docs]def is_main_process() -> bool: return get_rank() == 0
[docs]def synchronize(): """ Helper function to synchronize (barrier) among all processes when using distributed training """ if not dist.is_available(): return if not dist.is_initialized(): return world_size = dist.get_world_size() if world_size == 1: return if dist.get_backend() == dist.Backend.NCCL: # This argument is needed to avoid warnings. # It's valid only for NCCL backend. dist.barrier(device_ids=[torch.cuda.current_device()]) else: dist.barrier()
@functools.lru_cache() def _get_global_gloo_group(): """ Return a process group based on gloo backend, containing all the ranks The result is cached. """ if dist.get_backend() == "nccl": return dist.new_group(backend="gloo") else: return dist.group.WORLD
[docs]def all_gather(data, group=None): """ Run all_gather on arbitrary picklable data (not necessarily tensors). Args: data: any picklable object group: a torch process group. By default, will use a group which contains all ranks on gloo backend. Returns: list[data]: list of data gathered from each rank """ if get_world_size() == 1: return [data] if group is None: group = _get_global_gloo_group() # use CPU group by default, to reduce GPU RAM usage. world_size = dist.get_world_size(group) if world_size == 1: return [data] output = [None for _ in range(world_size)] dist.all_gather_object(output, data, group=group) return output
[docs]def gather(data, dst=0, group=None): """ Run gather on arbitrary picklable data (not necessarily tensors). Args: data: any picklable object dst (int): destination rank group: a torch process group. By default, will use a group which contains all ranks on gloo backend. Returns: list[data]: on dst, a list of data gathered from each rank. Otherwise, an empty list. """ if get_world_size() == 1: return [data] if group is None: group = _get_global_gloo_group() world_size = dist.get_world_size(group=group) if world_size == 1: return [data] rank = dist.get_rank(group=group) if rank == dst: output = [None for _ in range(world_size)] dist.gather_object(data, output, dst=dst, group=group) return output else: dist.gather_object(data, None, dst=dst, group=group) return []
[docs]def shared_random_seed(): """ Returns: int: a random number that is the same across all workers. If workers need a shared RNG, they can use this shared seed to create one. All workers must call this function, otherwise it will deadlock. """ ints = np.random.randint(2 ** 31) all_ints = all_gather(ints) return all_ints[0]
[docs]def reduce_dict(input_dict, average=True): """ Reduce the values in the dictionary from all processes so that process with rank 0 has the reduced results. Args: input_dict (dict): inputs to be reduced. All the values must be scalar CUDA Tensor. average (bool): whether to do average or sum Returns: a dict with the same keys as input_dict, after reduction. """ world_size = get_world_size() if world_size < 2: return input_dict with torch.no_grad(): names = [] values = [] # sort the keys so that they are consistent across processes for k in sorted(input_dict.keys()): names.append(k) values.append(input_dict[k]) values = torch.stack(values, dim=0) dist.reduce(values, dst=0) if dist.get_rank() == 0 and average: # only main process gets accumulated, so only divide by # world_size in this case values /= world_size reduced_dict = {k: v for k, v in zip(names, values)} return reduced_dict