Source code for detectron2.utils.analysis

# Copyright (c) Facebook, Inc. and its affiliates.
# -*- coding: utf-8 -*-

import typing
from typing import Any, List
import fvcore
from fvcore.nn import activation_count, flop_count, parameter_count, parameter_count_table
from torch import nn

from detectron2.export import TracingAdapter

__all__ = [
    "activation_count_operators",
    "flop_count_operators",
    "parameter_count_table",
    "parameter_count",
    "FlopCountAnalysis",
]

FLOPS_MODE = "flops"
ACTIVATIONS_MODE = "activations"


# Some extra ops to ignore from counting, including elementwise and reduction ops
_IGNORED_OPS = {
    "aten::add",
    "aten::add_",
    "aten::argmax",
    "aten::argsort",
    "aten::batch_norm",
    "aten::constant_pad_nd",
    "aten::div",
    "aten::div_",
    "aten::exp",
    "aten::log2",
    "aten::max_pool2d",
    "aten::meshgrid",
    "aten::mul",
    "aten::mul_",
    "aten::neg",
    "aten::nonzero_numpy",
    "aten::reciprocal",
    "aten::repeat_interleave",
    "aten::rsub",
    "aten::sigmoid",
    "aten::sigmoid_",
    "aten::softmax",
    "aten::sort",
    "aten::sqrt",
    "aten::sub",
    "torchvision::nms",  # TODO estimate flop for nms
}


[docs]class FlopCountAnalysis(fvcore.nn.FlopCountAnalysis): """ Same as :class:`fvcore.nn.FlopCountAnalysis`, but supports detectron2 models. """
[docs] def __init__(self, model, inputs): """ Args: model (nn.Module): inputs (Any): inputs of the given model. Does not have to be tuple of tensors. """ wrapper = TracingAdapter(model, inputs, allow_non_tensor=True) super().__init__(wrapper, wrapper.flattened_inputs) self.set_op_handle(**{k: None for k in _IGNORED_OPS})
[docs]def flop_count_operators(model: nn.Module, inputs: list) -> typing.DefaultDict[str, float]: """ Implement operator-level flops counting using jit. This is a wrapper of :func:`fvcore.nn.flop_count` and adds supports for standard detection models in detectron2. Please use :class:`FlopCountAnalysis` for more advanced functionalities. Note: The function runs the input through the model to compute flops. The flops of a detection model is often input-dependent, for example, the flops of box & mask head depends on the number of proposals & the number of detected objects. Therefore, the flops counting using a single input may not accurately reflect the computation cost of a model. It's recommended to average across a number of inputs. Args: model: a detectron2 model that takes `list[dict]` as input. inputs (list[dict]): inputs to model, in detectron2's standard format. Only "image" key will be used. supported_ops (dict[str, Handle]): see documentation of :func:`fvcore.nn.flop_count` Returns: Counter: Gflop count per operator """ old_train = model.training model.eval() ret = FlopCountAnalysis(model, inputs).by_operator() model.train(old_train) return {k: v / 1e9 for k, v in ret.items()}
[docs]def activation_count_operators( model: nn.Module, inputs: list, **kwargs ) -> typing.DefaultDict[str, float]: """ Implement operator-level activations counting using jit. This is a wrapper of fvcore.nn.activation_count, that supports standard detection models in detectron2. Note: The function runs the input through the model to compute activations. The activations of a detection model is often input-dependent, for example, the activations of box & mask head depends on the number of proposals & the number of detected objects. Args: model: a detectron2 model that takes `list[dict]` as input. inputs (list[dict]): inputs to model, in detectron2's standard format. Only "image" key will be used. Returns: Counter: activation count per operator """ return _wrapper_count_operators(model=model, inputs=inputs, mode=ACTIVATIONS_MODE, **kwargs)
def _wrapper_count_operators( model: nn.Module, inputs: list, mode: str, **kwargs ) -> typing.DefaultDict[str, float]: # ignore some ops supported_ops = {k: lambda *args, **kwargs: {} for k in _IGNORED_OPS} supported_ops.update(kwargs.pop("supported_ops", {})) kwargs["supported_ops"] = supported_ops assert len(inputs) == 1, "Please use batch size=1" tensor_input = inputs[0]["image"] inputs = [{"image": tensor_input}] # remove other keys, in case there are any old_train = model.training if isinstance(model, (nn.parallel.distributed.DistributedDataParallel, nn.DataParallel)): model = model.module wrapper = TracingAdapter(model, inputs) wrapper.eval() if mode == FLOPS_MODE: ret = flop_count(wrapper, (tensor_input,), **kwargs) elif mode == ACTIVATIONS_MODE: ret = activation_count(wrapper, (tensor_input,), **kwargs) else: raise NotImplementedError("Count for mode {} is not supported yet.".format(mode)) # compatible with change in fvcore if isinstance(ret, tuple): ret = ret[0] model.train(old_train) return ret def find_unused_parameters(model: nn.Module, inputs: Any) -> List[str]: """ Given a model, find parameters that do not contribute to the loss. Args: model: a model in training mode that returns losses inputs: argument or a tuple of arguments. Inputs of the model Returns: list[str]: the name of unused parameters """ assert model.training for _, prm in model.named_parameters(): prm.grad = None if isinstance(inputs, tuple): losses = model(*inputs) else: losses = model(inputs) if isinstance(losses, dict): losses = sum(losses.values()) losses.backward() unused: List[str] = [] for name, prm in model.named_parameters(): if prm.grad is None: unused.append(name) prm.grad = None return unused