# Copyright (c) Facebook, Inc. and its affiliates.
import math
import numpy as np
from enum import IntEnum, unique
from typing import List, Tuple, Union
import torch
from torch import device
_RawBoxType = Union[List[float], Tuple[float, ...], torch.Tensor, np.ndarray]
@unique
class BoxMode(IntEnum):
"""
Enum of different ways to represent a box.
"""
XYXY_ABS = 0
"""
(x0, y0, x1, y1) in absolute floating points coordinates.
The coordinates in range [0, width or height].
"""
XYWH_ABS = 1
"""
(x0, y0, w, h) in absolute floating points coordinates.
"""
XYXY_REL = 2
"""
Not yet supported!
(x0, y0, x1, y1) in range [0, 1]. They are relative to the size of the image.
"""
XYWH_REL = 3
"""
Not yet supported!
(x0, y0, w, h) in range [0, 1]. They are relative to the size of the image.
"""
XYWHA_ABS = 4
"""
(xc, yc, w, h, a) in absolute floating points coordinates.
(xc, yc) is the center of the rotated box, and the angle a is in degrees ccw.
"""
[docs] @staticmethod
def convert(box: _RawBoxType, from_mode: "BoxMode", to_mode: "BoxMode") -> _RawBoxType:
"""
Args:
box: can be a k-tuple, k-list or an Nxk array/tensor, where k = 4 or 5
from_mode, to_mode (BoxMode)
Returns:
The converted box of the same type.
"""
if from_mode == to_mode:
return box
original_type = type(box)
is_numpy = isinstance(box, np.ndarray)
single_box = isinstance(box, (list, tuple))
if single_box:
assert len(box) == 4 or len(box) == 5, (
"BoxMode.convert takes either a k-tuple/list or an Nxk array/tensor,"
" where k == 4 or 5"
)
arr = torch.tensor(box)[None, :]
else:
# avoid modifying the input box
if is_numpy:
arr = torch.from_numpy(np.asarray(box)).clone()
else:
arr = box.clone()
assert to_mode not in [BoxMode.XYXY_REL, BoxMode.XYWH_REL] and from_mode not in [
BoxMode.XYXY_REL,
BoxMode.XYWH_REL,
], "Relative mode not yet supported!"
if from_mode == BoxMode.XYWHA_ABS and to_mode == BoxMode.XYXY_ABS:
assert (
arr.shape[-1] == 5
), "The last dimension of input shape must be 5 for XYWHA format"
original_dtype = arr.dtype
arr = arr.double()
w = arr[:, 2]
h = arr[:, 3]
a = arr[:, 4]
c = torch.abs(torch.cos(a * math.pi / 180.0))
s = torch.abs(torch.sin(a * math.pi / 180.0))
# This basically computes the horizontal bounding rectangle of the rotated box
new_w = c * w + s * h
new_h = c * h + s * w
# convert center to top-left corner
arr[:, 0] -= new_w / 2.0
arr[:, 1] -= new_h / 2.0
# bottom-right corner
arr[:, 2] = arr[:, 0] + new_w
arr[:, 3] = arr[:, 1] + new_h
arr = arr[:, :4].to(dtype=original_dtype)
elif from_mode == BoxMode.XYWH_ABS and to_mode == BoxMode.XYWHA_ABS:
original_dtype = arr.dtype
arr = arr.double()
arr[:, 0] += arr[:, 2] / 2.0
arr[:, 1] += arr[:, 3] / 2.0
angles = torch.zeros((arr.shape[0], 1), dtype=arr.dtype)
arr = torch.cat((arr, angles), axis=1).to(dtype=original_dtype)
else:
if to_mode == BoxMode.XYXY_ABS and from_mode == BoxMode.XYWH_ABS:
arr[:, 2] += arr[:, 0]
arr[:, 3] += arr[:, 1]
elif from_mode == BoxMode.XYXY_ABS and to_mode == BoxMode.XYWH_ABS:
arr[:, 2] -= arr[:, 0]
arr[:, 3] -= arr[:, 1]
else:
raise NotImplementedError(
"Conversion from BoxMode {} to {} is not supported yet".format(
from_mode, to_mode
)
)
if single_box:
return original_type(arr.flatten().tolist())
if is_numpy:
return arr.numpy()
else:
return arr
class Boxes:
"""
This structure stores a list of boxes as a Nx4 torch.Tensor.
It supports some common methods about boxes
(`area`, `clip`, `nonempty`, etc),
and also behaves like a Tensor
(support indexing, `to(device)`, `.device`, and iteration over all boxes)
Attributes:
tensor (torch.Tensor): float matrix of Nx4. Each row is (x1, y1, x2, y2).
"""
def __init__(self, tensor: torch.Tensor):
"""
Args:
tensor (Tensor[float]): a Nx4 matrix. Each row is (x1, y1, x2, y2).
"""
if not isinstance(tensor, torch.Tensor):
tensor = torch.as_tensor(tensor, dtype=torch.float32, device=torch.device("cpu"))
else:
tensor = tensor.to(torch.float32)
if tensor.numel() == 0:
# Use reshape, so we don't end up creating a new tensor that does not depend on
# the inputs (and consequently confuses jit)
tensor = tensor.reshape((-1, 4)).to(dtype=torch.float32)
assert tensor.dim() == 2 and tensor.size(-1) == 4, tensor.size()
self.tensor = tensor
def clone(self) -> "Boxes":
"""
Clone the Boxes.
Returns:
Boxes
"""
return Boxes(self.tensor.clone())
def to(self, device: torch.device):
# Boxes are assumed float32 and does not support to(dtype)
return Boxes(self.tensor.to(device=device))
def area(self) -> torch.Tensor:
"""
Computes the area of all the boxes.
Returns:
torch.Tensor: a vector with areas of each box.
"""
box = self.tensor
area = (box[:, 2] - box[:, 0]) * (box[:, 3] - box[:, 1])
return area
def clip(self, box_size: Tuple[int, int]) -> None:
"""
Clip (in place) the boxes by limiting x coordinates to the range [0, width]
and y coordinates to the range [0, height].
Args:
box_size (height, width): The clipping box's size.
"""
assert torch.isfinite(self.tensor).all(), "Box tensor contains infinite or NaN!"
h, w = box_size
x1 = self.tensor[:, 0].clamp(min=0, max=w)
y1 = self.tensor[:, 1].clamp(min=0, max=h)
x2 = self.tensor[:, 2].clamp(min=0, max=w)
y2 = self.tensor[:, 3].clamp(min=0, max=h)
self.tensor = torch.stack((x1, y1, x2, y2), dim=-1)
def nonempty(self, threshold: float = 0.0) -> torch.Tensor:
"""
Find boxes that are non-empty.
A box is considered empty, if either of its side is no larger than threshold.
Returns:
Tensor:
a binary vector which represents whether each box is empty
(False) or non-empty (True).
"""
box = self.tensor
widths = box[:, 2] - box[:, 0]
heights = box[:, 3] - box[:, 1]
keep = (widths > threshold) & (heights > threshold)
return keep
def __getitem__(self, item) -> "Boxes":
"""
Args:
item: int, slice, or a BoolTensor
Returns:
Boxes: Create a new :class:`Boxes` by indexing.
The following usage are allowed:
1. `new_boxes = boxes[3]`: return a `Boxes` which contains only one box.
2. `new_boxes = boxes[2:10]`: return a slice of boxes.
3. `new_boxes = boxes[vector]`, where vector is a torch.BoolTensor
with `length = len(boxes)`. Nonzero elements in the vector will be selected.
Note that the returned Boxes might share storage with this Boxes,
subject to Pytorch's indexing semantics.
"""
if isinstance(item, int):
return Boxes(self.tensor[item].view(1, -1))
b = self.tensor[item]
assert b.dim() == 2, "Indexing on Boxes with {} failed to return a matrix!".format(item)
return Boxes(b)
def __len__(self) -> int:
return self.tensor.shape[0]
def __repr__(self) -> str:
return "Boxes(" + str(self.tensor) + ")"
def inside_box(self, box_size: Tuple[int, int], boundary_threshold: int = 0) -> torch.Tensor:
"""
Args:
box_size (height, width): Size of the reference box.
boundary_threshold (int): Boxes that extend beyond the reference box
boundary by more than boundary_threshold are considered "outside".
Returns:
a binary vector, indicating whether each box is inside the reference box.
"""
height, width = box_size
inds_inside = (
(self.tensor[..., 0] >= -boundary_threshold)
& (self.tensor[..., 1] >= -boundary_threshold)
& (self.tensor[..., 2] < width + boundary_threshold)
& (self.tensor[..., 3] < height + boundary_threshold)
)
return inds_inside
def get_centers(self) -> torch.Tensor:
"""
Returns:
The box centers in a Nx2 array of (x, y).
"""
return (self.tensor[:, :2] + self.tensor[:, 2:]) / 2
def scale(self, scale_x: float, scale_y: float) -> None:
"""
Scale the box with horizontal and vertical scaling factors
"""
self.tensor[:, 0::2] *= scale_x
self.tensor[:, 1::2] *= scale_y
[docs] @classmethod
def cat(cls, boxes_list: List["Boxes"]) -> "Boxes":
"""
Concatenates a list of Boxes into a single Boxes
Arguments:
boxes_list (list[Boxes])
Returns:
Boxes: the concatenated Boxes
"""
assert isinstance(boxes_list, (list, tuple))
if len(boxes_list) == 0:
return cls(torch.empty(0))
assert all([isinstance(box, Boxes) for box in boxes_list])
# use torch.cat (v.s. layers.cat) so the returned boxes never share storage with input
cat_boxes = cls(torch.cat([b.tensor for b in boxes_list], dim=0))
return cat_boxes
@property
def device(self) -> device:
return self.tensor.device
# type "Iterator[torch.Tensor]", yield, and iter() not supported by torchscript
# https://github.com/pytorch/pytorch/issues/18627
@torch.jit.unused
def __iter__(self):
"""
Yield a box as a Tensor of shape (4,) at a time.
"""
yield from self.tensor
def pairwise_intersection(boxes1: Boxes, boxes2: Boxes) -> torch.Tensor:
"""
Given two lists of boxes of size N and M,
compute the intersection area between __all__ N x M pairs of boxes.
The box order must be (xmin, ymin, xmax, ymax)
Args:
boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively.
Returns:
Tensor: intersection, sized [N,M].
"""
boxes1, boxes2 = boxes1.tensor, boxes2.tensor
width_height = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) - torch.max(
boxes1[:, None, :2], boxes2[:, :2]
) # [N,M,2]
width_height.clamp_(min=0) # [N,M,2]
intersection = width_height.prod(dim=2) # [N,M]
return intersection
# implementation from https://github.com/kuangliu/torchcv/blob/master/torchcv/utils/box.py
# with slight modifications
def pairwise_iou(boxes1: Boxes, boxes2: Boxes) -> torch.Tensor:
"""
Given two lists of boxes of size N and M, compute the IoU
(intersection over union) between **all** N x M pairs of boxes.
The box order must be (xmin, ymin, xmax, ymax).
Args:
boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively.
Returns:
Tensor: IoU, sized [N,M].
"""
area1 = boxes1.area() # [N]
area2 = boxes2.area() # [M]
inter = pairwise_intersection(boxes1, boxes2)
# handle empty boxes
iou = torch.where(
inter > 0,
inter / (area1[:, None] + area2 - inter),
torch.zeros(1, dtype=inter.dtype, device=inter.device),
)
return iou
def pairwise_ioa(boxes1: Boxes, boxes2: Boxes) -> torch.Tensor:
"""
Similar to :func:`pariwise_iou` but compute the IoA (intersection over boxes2 area).
Args:
boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively.
Returns:
Tensor: IoA, sized [N,M].
"""
area2 = boxes2.area() # [M]
inter = pairwise_intersection(boxes1, boxes2)
# handle empty boxes
ioa = torch.where(
inter > 0, inter / area2, torch.zeros(1, dtype=inter.dtype, device=inter.device)
)
return ioa
def pairwise_point_box_distance(points: torch.Tensor, boxes: Boxes):
"""
Pairwise distance between N points and M boxes. The distance between a
point and a box is represented by the distance from the point to 4 edges
of the box. Distances are all positive when the point is inside the box.
Args:
points: Nx2 coordinates. Each row is (x, y)
boxes: M boxes
Returns:
Tensor: distances of size (N, M, 4). The 4 values are distances from
the point to the left, top, right, bottom of the box.
"""
x, y = points.unsqueeze(dim=2).unbind(dim=1) # (N, 1)
x0, y0, x1, y1 = boxes.tensor.unsqueeze(dim=0).unbind(dim=2) # (1, M)
return torch.stack([x - x0, y - y0, x1 - x, y1 - y], dim=2)
def matched_pairwise_iou(boxes1: Boxes, boxes2: Boxes) -> torch.Tensor:
"""
Compute pairwise intersection over union (IOU) of two sets of matched
boxes that have the same number of boxes.
Similar to :func:`pairwise_iou`, but computes only diagonal elements of the matrix.
Args:
boxes1 (Boxes): bounding boxes, sized [N,4].
boxes2 (Boxes): same length as boxes1
Returns:
Tensor: iou, sized [N].
"""
assert len(boxes1) == len(
boxes2
), "boxlists should have the same" "number of entries, got {}, {}".format(
len(boxes1), len(boxes2)
)
area1 = boxes1.area() # [N]
area2 = boxes2.area() # [N]
box1, box2 = boxes1.tensor, boxes2.tensor
lt = torch.max(box1[:, :2], box2[:, :2]) # [N,2]
rb = torch.min(box1[:, 2:], box2[:, 2:]) # [N,2]
wh = (rb - lt).clamp(min=0) # [N,2]
inter = wh[:, 0] * wh[:, 1] # [N]
iou = inter / (area1 + area2 - inter) # [N]
return iou