Source code for detectron2.data.datasets.coco_panoptic

# Copyright (c) Facebook, Inc. and its affiliates.
import copy
import json
import os

from detectron2.data import DatasetCatalog, MetadataCatalog
from detectron2.utils.file_io import PathManager

from .coco import load_coco_json, load_sem_seg

__all__ = ["register_coco_panoptic", "register_coco_panoptic_separated"]


def load_coco_panoptic_json(json_file, image_dir, gt_dir, meta):
    """
    Args:
        image_dir (str): path to the raw dataset. e.g., "~/coco/train2017".
        gt_dir (str): path to the raw annotations. e.g., "~/coco/panoptic_train2017".
        json_file (str): path to the json file. e.g., "~/coco/annotations/panoptic_train2017.json".

    Returns:
        list[dict]: a list of dicts in Detectron2 standard format. (See
        `Using Custom Datasets </tutorials/datasets.html>`_ )
    """

    def _convert_category_id(segment_info, meta):
        if segment_info["category_id"] in meta["thing_dataset_id_to_contiguous_id"]:
            segment_info["category_id"] = meta["thing_dataset_id_to_contiguous_id"][
                segment_info["category_id"]
            ]
            segment_info["isthing"] = True
        else:
            segment_info["category_id"] = meta["stuff_dataset_id_to_contiguous_id"][
                segment_info["category_id"]
            ]
            segment_info["isthing"] = False
        return segment_info

    with PathManager.open(json_file) as f:
        json_info = json.load(f)

    ret = []
    for ann in json_info["annotations"]:
        image_id = int(ann["image_id"])
        # TODO: currently we assume image and label has the same filename but
        # different extension, and images have extension ".jpg" for COCO. Need
        # to make image extension a user-provided argument if we extend this
        # function to support other COCO-like datasets.
        image_file = os.path.join(image_dir, os.path.splitext(ann["file_name"])[0] + ".jpg")
        label_file = os.path.join(gt_dir, ann["file_name"])
        segments_info = [_convert_category_id(x, meta) for x in ann["segments_info"]]
        ret.append(
            {
                "file_name": image_file,
                "image_id": image_id,
                "pan_seg_file_name": label_file,
                "segments_info": segments_info,
            }
        )
    assert len(ret), f"No images found in {image_dir}!"
    assert PathManager.isfile(ret[0]["file_name"]), ret[0]["file_name"]
    assert PathManager.isfile(ret[0]["pan_seg_file_name"]), ret[0]["pan_seg_file_name"]
    return ret


[docs]def register_coco_panoptic( name, metadata, image_root, panoptic_root, panoptic_json, instances_json=None ): """ Register a "standard" version of COCO panoptic segmentation dataset named `name`. The dictionaries in this registered dataset follows detectron2's standard format. Hence it's called "standard". Args: name (str): the name that identifies a dataset, e.g. "coco_2017_train_panoptic" metadata (dict): extra metadata associated with this dataset. image_root (str): directory which contains all the images panoptic_root (str): directory which contains panoptic annotation images in COCO format panoptic_json (str): path to the json panoptic annotation file in COCO format sem_seg_root (none): not used, to be consistent with `register_coco_panoptic_separated`. instances_json (str): path to the json instance annotation file """ panoptic_name = name DatasetCatalog.register( panoptic_name, lambda: load_coco_panoptic_json(panoptic_json, image_root, panoptic_root, metadata), ) MetadataCatalog.get(panoptic_name).set( panoptic_root=panoptic_root, image_root=image_root, panoptic_json=panoptic_json, json_file=instances_json, evaluator_type="coco_panoptic_seg", ignore_label=255, label_divisor=1000, **metadata, )
[docs]def register_coco_panoptic_separated( name, metadata, image_root, panoptic_root, panoptic_json, sem_seg_root, instances_json ): """ Register a "separated" version of COCO panoptic segmentation dataset named `name`. The annotations in this registered dataset will contain both instance annotations and semantic annotations, each with its own contiguous ids. Hence it's called "separated". It follows the setting used by the PanopticFPN paper: 1. The instance annotations directly come from polygons in the COCO instances annotation task, rather than from the masks in the COCO panoptic annotations. The two format have small differences: Polygons in the instance annotations may have overlaps. The mask annotations are produced by labeling the overlapped polygons with depth ordering. 2. The semantic annotations are converted from panoptic annotations, where all "things" are assigned a semantic id of 0. All semantic categories will therefore have ids in contiguous range [1, #stuff_categories]. This function will also register a pure semantic segmentation dataset named ``name + '_stuffonly'``. Args: name (str): the name that identifies a dataset, e.g. "coco_2017_train_panoptic" metadata (dict): extra metadata associated with this dataset. image_root (str): directory which contains all the images panoptic_root (str): directory which contains panoptic annotation images panoptic_json (str): path to the json panoptic annotation file sem_seg_root (str): directory which contains all the ground truth segmentation annotations. instances_json (str): path to the json instance annotation file """ panoptic_name = name + "_separated" DatasetCatalog.register( panoptic_name, lambda: merge_to_panoptic( load_coco_json(instances_json, image_root, panoptic_name), load_sem_seg(sem_seg_root, image_root), ), ) MetadataCatalog.get(panoptic_name).set( panoptic_root=panoptic_root, image_root=image_root, panoptic_json=panoptic_json, sem_seg_root=sem_seg_root, json_file=instances_json, # TODO rename evaluator_type="coco_panoptic_seg", ignore_label=255, **metadata, ) semantic_name = name + "_stuffonly" DatasetCatalog.register(semantic_name, lambda: load_sem_seg(sem_seg_root, image_root)) MetadataCatalog.get(semantic_name).set( sem_seg_root=sem_seg_root, image_root=image_root, evaluator_type="sem_seg", ignore_label=255, **metadata, )
def merge_to_panoptic(detection_dicts, sem_seg_dicts): """ Create dataset dicts for panoptic segmentation, by merging two dicts using "file_name" field to match their entries. Args: detection_dicts (list[dict]): lists of dicts for object detection or instance segmentation. sem_seg_dicts (list[dict]): lists of dicts for semantic segmentation. Returns: list[dict] (one per input image): Each dict contains all (key, value) pairs from dicts in both detection_dicts and sem_seg_dicts that correspond to the same image. The function assumes that the same key in different dicts has the same value. """ results = [] sem_seg_file_to_entry = {x["file_name"]: x for x in sem_seg_dicts} assert len(sem_seg_file_to_entry) > 0 for det_dict in detection_dicts: dic = copy.copy(det_dict) dic.update(sem_seg_file_to_entry[dic["file_name"]]) results.append(dic) return results if __name__ == "__main__": """ Test the COCO panoptic dataset loader. Usage: python -m detectron2.data.datasets.coco_panoptic \ path/to/image_root path/to/panoptic_root path/to/panoptic_json dataset_name 10 "dataset_name" can be "coco_2017_train_panoptic", or other pre-registered ones """ from detectron2.utils.logger import setup_logger from detectron2.utils.visualizer import Visualizer import detectron2.data.datasets # noqa # add pre-defined metadata import sys from PIL import Image import numpy as np logger = setup_logger(name=__name__) assert sys.argv[4] in DatasetCatalog.list() meta = MetadataCatalog.get(sys.argv[4]) dicts = load_coco_panoptic_json(sys.argv[3], sys.argv[1], sys.argv[2], meta.as_dict()) logger.info("Done loading {} samples.".format(len(dicts))) dirname = "coco-data-vis" os.makedirs(dirname, exist_ok=True) num_imgs_to_vis = int(sys.argv[5]) for i, d in enumerate(dicts): img = np.array(Image.open(d["file_name"])) visualizer = Visualizer(img, metadata=meta) vis = visualizer.draw_dataset_dict(d) fpath = os.path.join(dirname, os.path.basename(d["file_name"])) vis.save(fpath) if i + 1 >= num_imgs_to_vis: break